一、立式离心泵流量调节方式
1.改变管路特性曲线
改变离心泵流量zui简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。
2.改变离心泵特性曲线
根据比例定律和切割定律,改变水泵的转速、改变水泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。但是对于已经工作的水泵,改变水泵结构的方法不太方便,并且由于改变了水泵的结构,降低了水泵的通用性,尽管它在某些时候调节流量经济方便[1],在生产中也很少采用。这里仅分析改变离心泵的转速调节流量的方法。从图1中分析,当改变水泵转速调节流量从q1下降到q2时,水泵的转速(或电机转速)从n1下降到n2,转速为n2下泵的特性曲线q-h与管路特性曲线he=h0 g1qe2(管路特曲线不变化)交于点a3q2,h3,点a3为通过调速调节流量后新的工作点。此调节方法调节效果明显、快捷、安全可靠,可以延长水泵使用寿命,节约电能,另外降低转速运行还能有效的降低离心泵的汽蚀余量npshr,使泵远离汽蚀区,减小离心泵发生汽蚀的可能性[2]。缺点是改变泵的转速需要有通过变频技术来改变原动机(通常是电动机)的转速,原理复杂,投资较大,且流量调节范围小。
3.泵的串、并连调节方式
当单台离心泵不能满足输送任务时,可以采用离心泵的并联或串联操作。用两台相同型号的离心泵并联,虽然压头变化不大,但加大了总的输送流量,并联泵的总效率与单台泵的效率相同;离心泵串联时总的压头增大,流量变化不大,串联泵的总效率与单台泵效率相同。
二、不同调节方式下泵的能耗分析
在对不同调节方式下的能耗分析时,文章仅针对目前广泛采用的阀门调节和泵变转速调节两种调节方式加以分析。由于离心泵的并、串联操作目的在于提高压头或流量,在化工领域运用不多,其能耗可以结合图2进行分析,方法基本相同。
1.阀门调节流量时的功耗
离心泵运行时,电动机输入泵轴的功率n为:
n=vqh/η
式中n——轴功率,w;
q——水泵的有效压头,m;
h——水泵的实际流量,m3/s;
v——水泵流体比重,n/m3;
η——水泵的效率。
当用阀门调节流量从q1到q2,在工作点a2消耗的轴功率为:
na2=vq2h2/η
vq2h3——实际有用功率,w;
vq2h2-h3——阀门上损耗得功率,w;
vq2h21/η-1——离心泵损失的功率,w。
2.变速调节流量时的功耗
在进行变速分析时因要用到离心泵的比例定律,根据其应用条件,以下分析均指离心泵的变速范围在±20%内,且离心泵本身效率的变化不大[3]。用电动机变速调节流量到流量q2时,在工作点a3泵消耗的轴功率为:
na3=vq2h3/η
同样经变换可得:
na3=vq2h3+vq2h31/η-1(2)
式中vq2h3——实际有用功率,w;
vq2h31/η-1——离心泵损失的功率,w。
太平洋泵业集团有限公司
工厂地址:浙江省温州市永嘉县瓯北镇林一路502号
主营产品:清水管道泵,irg管道循环泵
©2018 尊龙凯时人生就得博的版权所有:太平洋泵业集团有限公司 备案号: 总访问量:396586 站点地图 z6尊龙凯时官方网站的技术支持: